HBond plan making progress

Here is an expansion on the earlier post about this. Consider this plot:
This plot shows four distributions, all scaled so that the highest value is 1 . The first plot, in red, is the distribution of $\mathrm{N}-\mathrm{N}$ distances across the entire simulation. You can barely see it because it is almost completely covered by the distribution of distances when HBond "index 25 " is present. That is, I took all the observed hydrogen bonds, gave them each a number, and found the $\mathrm{N}-\mathrm{N}$ distance every time the bond was present. HBond 25 happens to have nearly the same distribution as the $\mathrm{N}-\mathrm{N}$
 distances across the entire simulation. This means that the bond is formed without regard to the $\mathrm{N}-\mathrm{N}$ distance. And, this makes sense because it is within a single GalNAc residue (\#12), and is defined by O4-HO4...O3. Unless there were some unusual hindrances, this bond should break and form independently of the $\mathrm{N}-\mathrm{N}$ distance, and it appears to do that.

However, HBonds 8 and 218 behave differently. Bond index 8 appears mainly when the $\mathrm{N}-\mathrm{N}$ distance is lower, while 218 appears mainly when it is higher.

Here are the bond descriptions:

| Index | Type | Acceptor | Hydrogen | Donor | Frames | Fraction | Avg.
 N-N
 dist. |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 1 | OVA_12@O2N | OVA_14@H3O | OVA_14@O3 | 5488 | 0.017 | 11.715 |
| 25 | 4 | OVA_12@O3 | OVA_12@H4O | OVA_12@O4 | 93433 | 0.294 | 12.399 |
| 218 | 1 | OVA_14@O6 | OVA_12@H4O | OVA_12@O4 | 1034 | 0.003 | 13.349 |

Showing 1 to 3 of 3 entries
PreviousNext
The types are:
o Glycan to its nearest amino acid
1 Glycan to another Glycan
2 Glycan to some other amino acid
3 Amino acid to another amino acid
4 Glycan to itself
5 Amino acid to itself
Note that $8 \& 218$ are between two different glycans.

