HBond plan making progress

128.192.9.183/eln/lachele/2013/07/07/hbond-plan-making-progress

July 7, 2013

Here is an expansion on <u>the earlier post about this</u>. Consider this plot:

This plot shows four distributions, all scaled so that the highest value is 1. The first plot, in red, is the distribution of N-N distances across the entire simulation. You can barely see it because it is almost completely covered by the distribution of distances when HBond "index 25" is present. That is, I took all the observed hydrogen bonds, gave them each a number, and found the N-N distance every time the bond was present. HBond 25 happens to have nearly the same distribution as the N-N distances across the entire simulation. This

means that the bond is formed without regard to the N-N distance. And, this makes sense because it is within a single GalNAc residue (#12), and is defined by O4-HO4...O3. Unless there were some unusual hindrances, this bond should break and form independently of the N-N distance, and it appears to do that.

However, HBonds 8 and 218 behave differently. Bond index 8 appears mainly when the N-N distance is lower, while 218 appears mainly when it is higher.

Here are the bond descriptions:

Туре	Acceptor	Hydrogen	Donor	Frames	Fraction	Avg. N-N dist.
1	0VA_12@O2N	0VA_14@H3O	0VA_14@O3	5488	0.017	11.715
4	0VA_12@O3	0VA_12@H4O	0VA_12@O4	93433	0.294	12.399
1	0VA_14@O6	0VA_12@H4O	0VA_12@O4	1034	0.003	13.349
	Type 1 4 1	Type Acceptor 1 0VA_12@O2N 4 0VA_12@O3 1 0VA_14@O6	Type Acceptor Hydrogen 1 0VA_12@O2N 0VA_14@H3O 4 0VA_12@O3 0VA_12@H4O 1 0VA_14@O6 0VA_12@H4O	Type Acceptor Hydrogen Donor 1 0VA_12@O2N 0VA_14@H3O 0VA_14@O3 4 0VA_12@O3 0VA_12@H4O 0VA_12@O4 1 0VA_14@O6 0VA_12@H4O 0VA_12@O4	Type Acceptor Hydrogen Donor Frames 1 0VA_12@O2N 0VA_14@H3O 0VA_14@O3 5488 4 0VA_12@O3 0VA_12@H4O 0VA_12@O4 93433 1 0VA_14@O6 0VA_12@H4O 0VA_12@O4 1034	Type Acceptor Hydrogen Donor Frames Fraction 1 0VA_12@O2N 0VA_14@H3O 0VA_14@O3 5488 0.017 4 0VA_12@O3 0VA_12@H4O 0VA_12@O4 93433 0.294 1 0VA_14@O6 0VA_12@H4O 0VA_12@O4 1034 0.003

<u>Edit</u>

Showing 1 to 3 of 3 entries <u>PreviousNext</u> The types are: o Glycan to its nearest amino acid

- 1 Glycan to another Glycan
- 2 Glycan to some other amino acid
- 3 Amino acid to another amino acid
- 4 Glycan to itself
- 5 Amino acid to itself

Note that 8 & 218 are between two different glycans.