Other Tools & Services http://glycam.org/docs/othertoolsservice GLYCAM-Web does more than just build 3D structures! Wed, 22 Apr 2020 01:31:19 +0000 en-US hourly 1 https://wordpress.org/?v=4.8.17 A sample place to share files http://glycam.org/docs/othertoolsservice/2020/04/22/a-sample-place-to-share-files/ Wed, 22 Apr 2020 01:31:19 +0000 http://glycam.org/docs/othertoolsservice/?p=1245

 

Here’s a file you can download.

The file can come with descriptions, etc.

You can also embed images:

]]>
SingleFrameNMR http://glycam.org/docs/othertoolsservice/2018/07/14/singleframenmr/ Sat, 14 Jul 2018 11:02:55 +0000 http://glycam.org/docs/othertoolsservice/?p=1213

This program uses a pdb and topology file to calculate 3J couplings and NOE’s.  This calculation is approximate because only a single frame is used and with the 1/r^6 approximation for the NOE calculation.  There are additional improvements to be added soon such as the inclusion of STD NOE’s and output of 2d NOESY spectra (simulated).  These improvements are done, but not yet included.

 

How to obtain the program

Click the green arrow in the graphic below to download the program files. Click on “DETAILS” to view additional information about the program.

SingleFrameNMR
SingleFrameNMR
SingleFrameNMR.tar_.gz
Version: 1.0
941.4 KiB
257 Downloads
Details

The program is also available for download here:

Software Downloads

Associated Publication

Direct NOE Simulation from Long MD Trajectories.  G. Chalmers, J.N. Glushka, B.L. Foley, R.J. Woods, J.H. Prestegard.  Journal of Magnetic Resonance.  2016.  http://dx.doi.org/10.1016/j.jmr.2016.01.006

Installation

Installation instructions are included in the download referenced at the top of this page.

Usage

Use instructions are included in the download referenced at the top of this page.

]]>
3J_Coupling_Distribution http://glycam.org/docs/othertoolsservice/2018/07/14/3j_coupling_distribution/ Sat, 14 Jul 2018 11:02:11 +0000 http://glycam.org/docs/othertoolsservice/?p=1210

 

This program uses Amber trajectories to calculate average 3J couplings.  It also produces histograms of 3-bond torsion angles from -180 to 180 degrees from the trajectories.  There are several types of options that the program can use.

How to obtain the program

This program uses Amber trajectories to calculate average 3J couplings.  It also produces histograms of 3-bond torsion angles from -180 to 180 degrees from the trajectories.  There are several types of options that the program can use.

How to obtain the program

Click the green arrow in the graphic below to download the program files. Click on “DETAILS” to view additional information about the program.

3J_coupling_distribution
3J_coupling_distribution
3J_coupling_distribution.tar_.gz
Version: 1.1
1.3 MiB
429 Downloads
Details

The program is also available for download here:

Software Downloads

Associated Publication

None

Installation

Installation instructions are included in the download referenced at the top of this page.

Usage

Use instructions are included in the download referenced at the top of this page.

Click the green arrow in the graphic below to download the program files. Click on “DETAILS” to view additional information about the program.

This program uses Amber trajectories to calculate average 3J couplings.  It also produces histograms of 3-bond torsion angles from -180 to 180 degrees from the trajectories.  There are several types of options that the program can use.

 

]]>
particular_relaxation_rate http://glycam.org/docs/othertoolsservice/2018/07/14/particular_relaxation_rate/ Sat, 14 Jul 2018 11:01:18 +0000 http://glycam.org/docs/othertoolsservice/?p=1214

This is a package that calculates spin-spin and spin-lattice relaxation rates from trajectories.  This program can be used for well-sampled trajectories such as small molecules, and also with large molecules such as proteins and in not so well sampled trajectories.  In the latter case the ‘sphere’ approximation is used in which an artificial tumbling is added to a frame aligned trajectory.  This sphere approximation substantially improves the sampling.  The software has been successfully used with work on the skp1 protein.

 

How to obtain the program

Click the green arrow in the graphic below to download the program files. Click on “DETAILS” to view additional information about the program.

particular_relaxation_rate
particular_relaxation_rate
particular_relaxation_rate.tar_.gz
Version: 1.0
107.9 MiB
238 Downloads
Details

The program is also available for download here:

Software Downloads

Associated Publication

Glycosylation associated with O2-sensing modulates the F-box combining site of Dictyostelium Skp1, JBC,

Installation

Installation instructions are included in the download referenced at the top of this page.

Usage

Use instructions are included in the download referenced at the top of this page.

Click the green arrow in the graphic below to download the program files. Click on “DETAILS” to view additional information about the program.

This program uses Amber trajectories to calculate average 3J couplings.  It also produces histograms of 3-bond torsion angles from -180 to 180 degrees from the trajectories.  There are several types of options that the program can use.

 

]]>
Assign_SLP_redirect http://glycam.org/docs/othertoolsservice/2018/07/14/assign_slp_redirect/ Sat, 14 Jul 2018 11:00:10 +0000 http://glycam.org/docs/othertoolsservice/?p=1215

This software uses rdc, chemical shift, and noe measurements. It also uses chemical shift and noe predictions. The program can use any number of media, e.g. peg, phage. The program uses a genetic algorithm to find the matching of measurements to residues. There is additional documentation in the Assign_SLP_1.12.

There are two related programs, MD2NOE_Protein and Assign_SLP_MD, which are not yet on glycam, which can also be found at the Prestegard Software site.

How to obtain the program

Click the green arrow in the graphic below to download the program files. Click on “DETAILS” to view additional information about the program.

ASSIGN SLP Redirect
ASSIGN SLP Redirect
ASSIGN_SLP_redirect.docx
11.8 KiB
443 Downloads
Details

The download gives a file showing where to find the program.  It, and the documentation, can be found at the Prestegard software site, http://tesla.ccrc.uga.edu/software/.  We did not want multiple versions on 2 sites, and the work was primarily done with Professor Prestegard.

The program is also available for download here:

Software Downloads

Associated Publication

Pederson, K., Chalmers, G. R., Gao, Q., Elnatan, D., Ramelot, T. A., Ma, L. C., Montelione, G. T., Kennedy, M. A., Agard, D. A., and Prestegard, J. H. (2017) NMR characterization of HtpG, the E-coli Hsp90, using sparse labeling with C-13-methyl alanine, Journal of Biomolecular Nmr 68, 225-236.

Installation

Installation instructions are included in the download referenced at the top of this page.

Usage

Use instructions are included in the download referenced at the top of this page.

Click the green arrow in the graphic below to download the program files. Click on “DETAILS” to view additional information about the program.

This program uses Amber trajectories to calculate average 3J couplings.  It also produces histograms of 3-bond torsion angles from -180 to 180 degrees from the trajectories.  There are several types of options that the program can use.

 

]]>
3D-SNFG Videos http://glycam.org/docs/othertoolsservice/2016/06/15/3d-snfg-videos/ Wed, 15 Jun 2016 14:20:32 +0000 http://glycam.org/docs/othertoolsservice/?p=975

Click on an image to watch a short video of the system. Or, download a copy by right-clicking the image and choosing “Save Link As…”

Antibody-Receptor

3sgjPDB ID: 3SGJ

Erythropoitin Glycoform

epoPDB ID: 1BUY – Glycans added with Glycoprotein Builder | Tutorial

]]>
3D-SNFG Images http://glycam.org/docs/othertoolsservice/2016/06/14/3d-snfg-images/ Tue, 14 Jun 2016 17:54:53 +0000 http://glycam.org/docs/othertoolsservice/?p=919

Glycans1

The .pdb file used to generate each image may be downloaded by clicking on the respective titles.

Branched Glycan

reducing_label

Notice that the glycan appears linear without the label for the reducing terminus (far right).

High Mannose

hi-man

Heparan Sulfate Attachment

HS-attachment

Heparan Sulfate Fragment

HS-icons

Xyloglucan

xyl-snfg

Complex N-Glycan (CFG Array #484)

complex-fuc-N-glycan

Glycan-Protein Complexes

Salmonella Antibody SE155-4

1mfb(PDB ID: 1MFB)

 Glycoproteins

Erythropoietin Glycoform1

epoPDB ID: 1BUY – Glycans added with Glycoprotein Builder | Tutorial

Antibody-Receptor

3sgjPDB ID: 3SGJ

Example Shapes

example_shapes

1The glycans were built with the GLYCAM Webtool

 

 

]]>
3D-SNFG: List of Residue Names http://glycam.org/docs/othertoolsservice/2016/06/09/3d-snfg-list-of-residue-names/ Thu, 09 Jun 2016 15:04:00 +0000 http://glycam.org/docs/othertoolsservice/?p=858

Description

The following tables define the residue names that are recognized within the 3D-SNFG program, and are separated based on the source: PDB, GLYCAM, and CHARMM*. Some monosaccharide residues that are defined by the SNFG are uncommon, and not currently used by any of these sources. While the 3D-SNFG program is capable of drawing the appropriate shapes/colors for these uncommon residues, they will not be recognized unless the user defines the residue names within the code manually.

Quickly navigate between the three nomenclatures via the table of contents (above). The columns may be sorted by clicking on the respective header. If searching for a specific residue name, use the ‘Find’ function within your web browser.

*Note: Some CHARMM carbohydrate residue names are longer than the four-character field allocated in standard PDBs and XPLOR-format PSF files (used in NAMD). In that case, residue recognition will depend on what four-character residue name is substituted in these files for the full CHARMM residue name. If a file was produced with PSFGEN, the user likely selected an alternate residue name that fit within the four-character constraint, and will need to add the new residue name to the appropriate CHARMM list within the script to ensure recognition. However, if a file was produced with CHARMM-GUI, the residue name may simply have been truncated to four characters, causing recognition conflicts. For example, in the case of GlcNAc, CHARMM-GUI truncates BGLCNA to BGLC. As BGLC is the standard CHARMM residue name for glucose, 3D-SNFG will recognize the residue as glucose, even though it is structurally an N-acetyl-glycosamine.

PDB

AbbreviationFull NamePDB Nomenclature
GlcGlucoseGLC MAL BGC
GlcNAcN-Acetyl GlucosamineNAG 4YS SGN BGLN NDG
GlcNGlucosamineGCS
GlcAGlucuronic AcidGCU
QuiQuinovoseQUI
QuiNAcN-Acetyl Quinovosamine
OliOlivoseOLI
ManMannoseMAN BMA
ManNAcN-Acetyl Mannosamine
ManNMannosamine
ManAMannuronic AcidMAV BEM
RhaRhamnoseRAM
RhaNAcN-Acetyl Rhamnosamine
TyvTyveloseTYV
AraArabinoseARA AHR
GalGalactoseGAL GLA
GalNAcN-Acetyl GalactosamineNGA
GalNGalactosamine
GalAGalacturonic AcidADA
GulGuloseGUL GUP GL0
GulNAcN-Acetyl Gulosamine
GulNGulosamine
GulAGuluronic AcidLGU
AltAltroseALT
AltNAcN-Acetyl Altrosamine
AltNAltrosamine
AltAAltruronic Acid
6dAlt6-Deoxy Altrose
AllAlloseALL WOO
AllNAcN-Acetyl Allosamine
AllNAllosamine
AllAAlluronic Acid
TalTaloseTAL
TalNAcN-Acetyl Talosamine
TalNTalosamine
TalATaluronic Acid
6dTal6-Deoxy Talose
IdoIdoseIDO
IdoNAcN-Acetyl Idosamine
IdoNIdosamine
IdoAIduronic AcidIDS
FucFucoseFUC FUL
FucNAcN-Acetyl Fucosamine
LyxLyxoseLYX
AbeAbequoseABE
XylXyloseXYL XYS LXC XYP
ParParatosePAR
RibRiboseRIB
DigDigitoxoseDIG
ColColitoseCOL
BacBacillosamineBAC
ApiApicoseAPI
FruFructoseFRU
TagTagatoseTAG
SorSorboseSOR
PsiPsicosePSI
Dha3-Deoxy Lyxo-Heptulosaric AcidDHA
KdnKeto-Deoxy Nonulonic AcidKDN
KdoKeto-Deoxy Octulonic AcidKDO
NeuNeuraminic AcidNEU
Neu5AcN-Acetyl Neuraminic AcidSIA
Neu5GcN-Glycolyl Neuraminic Acid
MurMuramic AcidMUR
MurNAcN-Acetyl Muramic Acid
MurNGcN-Glycolyl Muramic Acid
LDManHepL-Glycero-D-Manno HeptoseGMH
DDManHepD-Glycero-D-Manno-Heptose

GLYCAM

AbbreviationFull NameGlycam Nomenclature
GlcGlucose0GA 0GB 1GA 1GB 2GA 2GB 3GA 3GB 4GA 4GB 6GA 6GB ZGA ZGB YGA YGB XGA XGB WGA WGB VGA VGB UGA UGB TGA TGB SGA SGB RGA RGB QGA QGB PGA PGB 0gA 0gB 1gA 1gB 2gA 2gB 3gA 3gB 4gA 4gB 6gA 6gB ZgA ZgB YgA YgB XgA XgB WgA WgB VgA VgB UgA UgB TgA TgB SgA SgB RgA RgB QgA QgB PgA PgB
GlcNAcN-Acetyl Glucosamine0YA 0YB 1YA 1YB 3YA 3YB 4YA 4YB 6YA 6YB WYA WYB VYA VYB UYA UYB QYA QYB 0yA 0yB 1yA 1yB 3yA 3yB 4yA 4yB 6yA 6yB WyA WyB VyA VyB UyA UyB QyA QyB
GlcNGlucosamine0YN 0Yn 0YNP 0YnP 0YS 0Ys 3YS 3Ys 4YS 4Ys 6YS 6Ys QYS QYs UYS UYs VYS VYs WYS WYs 0yS 0ys 3yS 3ys 4yS 4ys
GlcAGlucuronic Acid0ZA 0ZB 1ZA 1ZB 2ZA 2ZB 3ZA 3ZB 4ZA 4ZB ZZA ZZB YZA YZB WZA WZB TZA TZB 0zA 0zB 1zA 1zB 2zA 2zB 3zA 3zB 4zA 4zB ZzA ZzB YzA YzB WzA WzB TzA TzB 0ZBP
QuiQuinovose0QA 0QB 1QA 1QB 2QA 2QB 3QA 3QB 4QA 4QB ZQA ZQB YQA YQB WQA WQB TQA TQB 0qA 0qB 1qA 1qB 2qA 2qB 3qA 3qB 4qA 4qB ZqA ZqB YqA YqB WqA WqB TqA TqB
QuiNAcN-Acetyl Quinovosamine
OliOlivose
ManMannose0MA 0MB 1MA 1MB 2MA 2MB 3MA 3MB 4MA 4MB 6MA 6MB ZMA ZMB YMA YMB XMA XMB WMA WMB VMA VMB UMA UMB TMA TMB SMA SMB RMA RMB QMA QMB PMA PMB 0mA 0mB 1mA 1mB 2mA 2mB 3mA 3mB 4mA 4mB 6mA 6mB ZmA ZmB YmA YmB XmA XmB WmA WmB VmA VmB UmA UmB TmA TmB SmA SmB RmA RmB QmA QmB PmA PmB
ManNAcN-Acetyl Mannosamine0WA 0WB 1WA 1WB 3WA 3WB 4WA 4WB 6WA 6WB WWA WWB VWA VWB UWA UWB QWA QWB 0wA 0wB 1wA 1wB 3wA 3wB 4wA 4wB 6wA 6wB WwA WwB VwA VwB UwA UwB QwA QwB
ManNMannosamine
ManAMannuronic Acid
RhaRhamnose0HA 0HB 1HA 1HB 2HA 2HB 3HA 3HB 4HA 4HB ZHA ZHB YHA YHB WHA WHB THA THB 0hA 0hB 1hA 1hB 2hA 2hB 3hA 3hB 4hA 4hB ZhA ZhB YhA YhB WhA WhB ThA ThB
RhaNAcN-Acetyl Rhamnosamine
TyvTyvelose0TV 0Tv 1TV 1Tv 2TV 2Tv 4TV 4Tv YTV YTv 0tV 0tv 1tV 1tv 2tV 2tv 4tV 4tv YtV Ytv
AraArabinose0AA 0AB 1AA 1AB 2AA 2AB 3AA 3AB 4AA 4AB ZAA ZAB YAA YAB WAA WAB TAA TAB 0AD 0AU 1AD 1AU 2AD 2AU 3AD 3AU 5AD 5AU ZAD ZAU 0aA 0aB 1aA 1aB 2aA 2aB 3aA 3aB 4aA 4aB ZaA ZaB YaA YaB WaA WaB TaA TaB 0aD 0aU 1aD 1aU 2aD 2aU 3aD 3aU 5aD 5aU ZaD ZaU
GalGalactose0LA 0LB 1LA 1LB 2LA 2LB 3LA 3LB 4LA 4LB 6LA 6LB ZLA ZLB YLA YLB XLA XLB WLA WLB VLA VLB ULA ULB TLA TLB SLA SLB RLA RLB QLA QLB PLA PLB 0lA 0lB 1lA 1lB 2lA 2lB 3lA 3lB 4lA 4lB 6lA 6lB ZlA ZlB YlA YlB XlA XlB WlA WlB VlA VlB UlA UlB TlA TlB SlA SlB RlA RlB QlA QlB PlA PlB
GalNAcN-Acetyl Galactosamine0VA 0VB 1VA 1VB 3VA 3VB 4VA 4VB 6VA 6VB WVA WVB VVA VVB UVA UVB QVA QVB 0vA 0vB 1vA 1vB 3vA 3vB 4vA 4vB 6vA 6vB WvA WvB VvA VvB UvA UvB QvA QvB
GalNGalactosamine
GalAGalacturonic Acid0OA 0OB 1OA 1OB 2OA 2OB 3OA 3OB 4OA 4OB ZOA ZOB YOA YOB WOA WOB TOA TOB 0oA 0oB 1oA 1oB 2oA 2oB 3oA 3oB 4oA 4oB ZoA ZoB YoA YoB WoA WoB ToA ToB
GulGulose0KA 0KB 1KA 1KB 2KA 2KB 3KA 3KB 4KA 4KB 6KA 6KB ZKA ZKB YKA YKB XKA XKB WKA WKB VKA VKB UKA UKB TKA TKB SKA SKB RKA RKB QKA QKB PKA PKB 0kA 0kB 1kA 1kB 2kA 2kB 3kA 3kB 4kA 4kB 6kA 6kB ZkA ZkB YkA YkB XkA XkB WkA WkB VkA VkB UkA UkB TkA TkB SkA SkB RkA RkB QkA QkB PkA PkB
GulNAcN-Acetyl Gulosamine
GulNGulosamine
GulAGuluronic Acid
AltAltrose0EA 0EB 1EA 1EB 2EA 2EB 3EA 3EB 4EA 4EB 6EA 6EB ZEA ZEB YEA YEB XEA XEB WEA WEB VEA VEB UEA UEB TEA TEB SEA SEB REA REB QEA QEB PEA PEB 0eA 0eB 1eA 1eB 2eA 2eB 3eA 3eB 4eA 4eB 6eA 6eB ZeA ZeB YeA YeB XeA XeB WeA WeB VeA VeB UeA UeB TeA TeB SeA SeB ReA ReB QeA QeB PeA PeB
AltNAcN-Acetyl Altrosamine
AltNAltrosamine
AltAAltruronic Acid
6dAlt6-Deoxy Altrose
AllAllose0NA 0NB 1NA 1NB 2NA 2NB 3NA 3NB 4NA 4NB 6NA 6NB ZNA ZNB YNA YNB XNA XNB WNA WNB VNA VNB UNA UNB TNA TNB SNA SNB RNA RNB QNA QNB PNA PNB 0nA 0nB 1nA 1nB 2nA 2nB 3nA 3nB 4nA 4nB 6nA 6nB ZnA ZnB YnA YnB XnA XnB WnA WnB VnA VnB UnA UnB TnA TnB SnA SnB RnA RnB QnA QnB PnA PnB
AllNAcN-Acetyl Allosamine
AllNAllosamine
AllAAlluronic Acid
TalTalose0TA 0TB 1TA 1TB 2TA 2TB 3TA 3TB 4TA 4TB 6TA 6TB ZTA ZTB YTA YTB XTA XTB WTA WTB VTA VTB UTA UTB TTA TTB STA STB RTA RTB QTA QTB PTA PTB 0tA 0tB 1tA 1tB 2tA 2tB 3tA 3tB 4tA 4tB 6tA 6tB ZtA ZtB YtA YtB XtA XtB WtA WtB VtA VtB UtA UtB TtA TtB StA StB RtA RtB QtA QtB PtA PtB
TalNAcN-Acetyl Talosamine
TalNTalosamine
TalATaluronic Acid
6dTal6-Deoxy Talose
IdoIdose
IdoNAcN-Acetyl Idosamine
IdoNIdosamine
IdoAIduronic Acid0UA 0UB 1UA 1UB 2UA 2UB 3UA 3UB 4UA 4UB ZUA ZUB YUA YUB WUA WUB TUA TUB 0uA 0uB 1uA 1uB 2uA 2uB 3uA 3uB 4uA 4uB ZuA ZuB YuA YuB WuA WuB TuA TuB YuAP
FucFucose0FA 0FB 1FA 1FB 2FA 2FB 3FA 3FB 4FA 4FB ZFA ZFB YFA YFB WFA WFB TFA TFB 0fA 0fB 1fA 1fB 2fA 2fB 3fA 3fB 4fA 4fB ZfA ZfB YfA YfB WfA WfB TfA TfB
FucNAcN-Acetyl Fucosamine
LyxLyxose0DA 0DB 1DA 1DB 2DA 2DB 3DA 3DB 4DA 4DB ZDA ZDB YDA YDB WDA WDB TDA TDB 0DD 0DU 1DD 1DU 2DD 2DU 3DD 3DU 5DD 5DU ZDD ZDU 0dA 0dB 1dA 1dB 2dA 2dB 3dA 3dB 4dA 4dB ZdA ZdB YdA YdB WdA WdB TdA TdB 0dD 0dU 1dD 1dU 2dD 2dU 3dD 3dU 5dD 5dU ZdD ZdU
AbeAbequose0AE 2AE 4AE YGa 0AF 2AF 4AF YAF
XylXylose0XA 0XB 1XA 1XB 2XA 2XB 3XA 3XB 4XA 4XB ZXA ZXB YXA YXB WXA WXB TXA TXB 0XD 0XU 1XD 1XU 2XD 2XU 3XD 3XU 5XD 5XU ZXD ZXU 0xA 0xB 1xA 1xB 2xA 2xB 3xA 3xB 4xA 4xB ZxA ZxB YxA YxB WxA WxB TxA TxB 0xD 0xU 1xD 1xU 2xD 2xU 3xD 3xU 5xD 5xU ZxD ZxU
ParParatose
RibRibose0RA 0RB 1RA 1RB 2RA 2RB 3RA 3RB 4RA 4RB ZRA ZRB YRA YRB WRA WRB TRA TRB 0RD 0RU 1RD 1RU 2RD 2RU 3RD 3RU 5RD 5RU ZRD ZRU 0rA 0rB 1rA 1rB 2rA 2rB 3rA 3rB 4rA 4rB ZrA ZrB YrA YrB WrA WrB TrA TrB 0rD 0rU 1rD 1rU 2rD 2rU 3rD 3rU 5rD 5rU ZrD ZrU
DigDigitoxose
ColColitose
BacBacillosamine0BC 3BC 0bC 3bC
ApiApicose
FruFructose0CA 0CB 1CA 1CB 2CA 2CB 3CA 3CB 4CA 4CB 5CA 5CB WCA WCB 0CD 0CU 1CD 1CU 2CD 2CU 3CD 3CU 4CD 4CU 6CD 6CU WCD WCU VCD VCU UCD UCU QCD QCU 0cA 0cB 1cA 1cB 2cA 2cB 3cA 3cB 4cA 4cB 5cA 5cB WcA WcB 0cD 0cU 1cD 1cU 2cD 2cU 3cD 3cU 4cD 4cU 6cD 6cU WcD WcU VcD VcU UcD UcU QcD QcU
TagTagatose0JA 0JB 1JA 1JB 2JA 2JB 3JA 3JB 4JA 4JB 5JA 5JB WJA WJB 0JD 0JU 1JD 1JU 2JD 2JU 3JD 3JU 4JD 4JU 6JD 6JU WJD WJU VJD VJU UJD UJU QJD QJU 0jA 0jB 1jA 1jB 2jA 2jB 3jA 3jB 4jA 4jB 5jA 5jB WjA WjB 0jD 0jU 1jD 1jU 2jD 2jU 3jD 3jU 4jD 4jU 6jD 6jU WjD WjU VjD VjU UjD UjU QjD QjU
SorSorbose0BA 0BB 1BA 1BB 2BA 2BB 3BA 3BB 4BA 4BB 5BA 5BB WBA WBB 0BD 0BU 1BD 1BU 2BD 2BU 3BD 3BU 4BD 4BU 6BD 6BU WBD WBU VBD VBU UBD UBU QBD QBU 0bA 0bB 1bA 1bB 2bA 2bB 3bA 3bB 4bA 4bB 5bA 5bB WbA WbB 0bD 0bU 1bD 1bU 2bD 2bU 3bD 3bU 4bD 4bU 6bD 6bU WbD WbU VbD VbU UbD UbU QbD QbU
PsiPsicose0PA 0PB 1PA 1PB 2PA 2PB 3PA 3PB 4PA 4PB 5PA 5PB WPA WPB 0PD 0PU 1PD 1PU 2PD 2PU 3PD 3PU 4PD 4PU 6PD 6PU WPD WPU VPD VPU UPD UPU QPD QPU 0pA 0pB 1pA 1pB 2pA 2pB 3pA 3pB 4pA 4pB 5pA 5pB WpA WpB 0pD 0pU 1pD 1pU 2pD 2pU 3pD 3pU 4pD 4pU 6pD 6pU WpD WpU VpD VpU UpD UpU QpD QpU
Dha3-Deoxy Lyxo-Heptulosaric Acid
KdnKeto-Deoxy Nonulonic Acid
KdoKeto-Deoxy Octulonic Acid
NeuNeuraminic Acid
Neu5AcN-Acetyl Neuraminic Acid0SA 0SB 4SA 4SB 7SA 7SB 8SA 8SB 9SA 9SB ASA ASB BSA BSB CSA CSB DSA DSB ESA ESB FSA FSB GSA GSB HSA HSB ISA ISB JSA JSB KSA KSB 0sA 0sB 4sA 4sB 7sA 7sB 8sA 8sB 9sA 9sB AsA AsB BsA BsB CsA CsB DsA DsB EsA EsB FsA FsB GsA GsB HsA HsB IsA IsB JsA JsB KsA KsB
Neu5GcN-Glycolyl Neuraminic Acid0GL 4GL 7GL 8GL 9GL CGL DGL EGL FGL GGL HGL IGL JGL KGL 0gL 4gL 7gL 8gL 9gL AgL BgL CgL DgL EgL FgL GgL HgL IgL JgL KgL
MurMuramic Acid
MurNAcN-Acetyl Muramic Acid
MurNGcN-Glycolyl Muramic Acid
LDManHepL-Glycero-D-Manno Heptose
DDManHepD-Glycero-D-Manno-Heptose

CHARMM

AbbreviationFull NameCHARMM Nomenclature
GlcGlucoseAGLC BGLC
GlcNAcN-Acetyl GlucosamineAGLCNA BGLCNA BGLCN0
GlcNGlucosamine
GlcAGlucuronic AcidAGLCA BGLCA BGLCA0
QuiQuinovose
QuiNAcN-Acetyl Quinovosamine
OliOlivose
ManMannoseAMAN BMAN
ManNAcN-Acetyl Mannosamine
ManNMannosamine
ManAMannuronic Acid
RhaRhamnoseARHM BRHM
RhaNAcN-Acetyl Rhamnosamine
TyvTyvelose
AraArabinoseAARB BARB
GalGalactoseAGAL BGAL
GalNAcN-Acetyl GalactosamineAGALNA BGALNA
GalNGalactosamine
GalAGalacturonic Acid
GulGuloseAGUL BGUL
GulNAcN-Acetyl Gulosamine
GulNGulosamine
GulAGuluronic Acid
AltAltroseAALT BALT
AltNAcN-Acetyl Altrosamine
AltNAltrosamine
AltAAltruronic Acid
6dAlt6-Deoxy Altrose
AllAlloseAALL BALL
AllNAcN-Acetyl Allosamine
AllNAllosamine
AllAAlluronic Acid
TalTaloseATAL BTAL
TalNAcN-Acetyl Talosamine
TalNTalosamine
TalATaluronic Acid
6dTal6-Deoxy Talose
IdoIdoseAIDO BIDO
IdoNAcN-Acetyl Idosamine
IdoNIdosamine
IdoAIduronic AcidAIDOA BIDOA
FucFucoseAFUC BFUC
FucNAcN-Acetyl Fucosamine
LyxLyxoseALYF BLYF
AbeAbequose
XylXyloseAXYL BXYL AXYF BXYF
ParParatose
RibRiboseARIB BRIB
DigDigitoxose
ColColitose
BacBacillosamine
ApiApicose
FruFructoseAFRU BFRU
TagTagatose
SorSorbose
PsiPsicose
Dha3-Deoxy Lyxo-Heptulosaric Acid
KdnKeto-Deoxy Nonulonic Acid
KdoKeto-Deoxy Octulonic Acid
NeuNeuraminic Acid
Neu5AcN-Acetyl Neuraminic AcidANE5AC BNE5AC
Neu5GcN-Glycolyl Neuraminic Acid
MurMuramic Acid
MurNAcN-Acetyl Muramic Acid
MurNGcN-Glycolyl Muramic Acid
LDManHepL-Glycero-D-Manno Heptose
DDManHepD-Glycero-D-Manno-Heptose
]]>
3D-Symbol Nomenclature For Glycans (3D-SNFG) http://glycam.org/docs/othertoolsservice/2016/06/03/3d-symbol-nomenclature-for-glycans-3d-snfg/ Fri, 03 Jun 2016 21:36:20 +0000 http://glycam.org/docs/othertoolsservice/?p=813

header-2.1

Description

The Symbol Nomenclature For Glycans (SNFG) facilitates the efficient communication of carbohydrate structures, and has become widely accepted by the glycobiology community. The system is fully described in the NCBI text Essentials of Glycobiology.

Carbohydrates currently lack a simplistic, standardized representation for 3D structure, and are thus predominantly visualized with atoms displayed. Discerning the glycan sequence from these atomistic views is challenging, even for short  for oligosaccharide chains. The following software generates 3D shapes that match the SNFG format (both color and shape), and positions them on the geometric center of carbohydrate rings that are identified within a PDB file. This representation generates a cartoon-like representation for glycans within the Visual Molecular Dynamics (VMD) program. Automated recognition of monosaccharides relies upon commonly employed residue1 and atom names.2

1The current list of recognizable residue names includes common names from the PDB, as well those from the GLYCAM and CHARMM forcefields. Unknown residues are depicted as white, flat hexagons
2The ring atoms must be C1, C2, C3, C4, C5, and O5, unless the monosaccharide is a sialic acid, in which case they should be named C2, C3, C4, C5, C6, and O6

shapes_banner

Installation

Note: VMD installation is discussed in the documentation of Ancilliary Software.

Step 1) Download

Two options are provided that differ by the VMD ‘default’ settings. Option 1 only includes the 3D-SNFG representations, and maintains the original settings for VMD. Option 2 contains the 3D-SNFG script, as well as a few aesthetic changes that are loaded at startup (i.e. white background, automatic representation of proteins with NewCartoon, etc.).  The 3D-SNFG representations are identical in both cases.

option_1-2

Details: A vmdrc file allows you to customize the default settings of VMD. Option 2 initializes multiple representations in order to display the protein backbone as a cartoon, side chains as sticks, and all other atoms as licorice. The background has been changed to white, labels to black,, and display set to an orthographic view. Other options can be useful, such as changing the size and position of windows.

Option 1

Option 2

Linux & Macintosh: Download the following .vmdrc file
3D-SNFG Option 1 (Linux/Macintosh)
3D-SNFG Option 1 (Linux/Macintosh)
3D-SNFG_v1_default-vmdrc_Linux-Mac.zip
Version: 1
15.3 KiB
433 Downloads
Details
Linux & Macintosh: Download the following .vmdrc file
3D-SNFG Option 2 (Linux/Macintosh)
3D-SNFG Option 2 (Linux/Macintosh)
3D-SNFG_v1_mod-vmdrc_Linux-Mac.zip
15.4 KiB
453 Downloads
Details
Windows: Download the following vmd.rc file
3D-SNFG Option 1 (Windows)
3D-SNFG Option 1 (Windows)
3D-SNFG_v1_default-vmdrc_Windows.zip
Version: 1
15.3 KiB
537 Downloads
Details
Windows: Download the following vmd.rc file
3D-SNFG Option 2 (Windows)
3D-SNFG Option 2 (Windows)
3D-SNFG_v1_mod-vmdrc_Windows.zip
Version: 1
15.4 KiB
522 Downloads
Details

Experienced VMD Users: You can source the 3D-SNFG script within your personal vmdrc file. The provided vmdrc files consist of two parts, the initialization of VMD and the 3D-SNFG tcl script. Rename the provided vmdrc file 3D-SNFG_v1.tcl, and remove all of the lines above ‘# Load the 3D-SNFG script’. Now source this script within your personal vmdrc.

Step 2) Install

Move the file to either your home directory, or the location where the VMD software is installed, and unzip the file.

Note that the unzipped file is named .vmdrc on Macintosh and Linux systems. A period that precedes a filename designates the file as “hidden”. Although the unzipped contents may appear empty, the file will be recognized by VMD.

Step 3) Visualize

Load a file containing a glycan into VMD (i.e. PDB ID: 3SGJ). On your keyboard, use the following shortcut keys:

  • ‘i’ – apply the SNFG-Icons representation
  • ‘g’ – apply the 3D-SNFG representation
  • ‘b’ – apply the 3D-SNFG representation and label the reducing terminus
  • ‘d’ – delete the drawn objects

FAQ

Advanced Usage

Gallery

Questions/Comments

If you have any issues that are not covered in the FAQ, or would like to provide suggestions for the representations, please contact us.

Citation

Thieker, D. F., Hadden, J. A., Schulten, K., & Woods, R. J. (2016). 3D implementation of the Symbol Nomenclature for Graphical Representation of Glycans. Glycobiology, 26(8), 786-787. DOI:10.1093/glycob/cww076)

Associated Publications

SNFG Update | Varki, A., Cummings, R. D., Aebi, M., Packer, N. H., Seeberger, P. H., Esko, J. D., … & Prestegard, J. J. (2015). “Symbol Nomenclature for Graphical Representations of Glycans.” Glycobiology, 25 (12), 1323-1324. DOI: 10.1093/glycob/cwv091

VMD | Humphrey, W., Dalke, A. & Schulten, K. (1996). “VMD – Visual Molecular Dynamics”, J. Molec. Graphics, 14 (1), 33-38. DOI: 10.1016/0263-7855(96)00018-5

]]>
TEST http://glycam.org/docs/othertoolsservice/2014/02/18/hello-world/ Tue, 18 Feb 2014 17:47:59 +0000 http://glycam.org/docs/ohtertoolsservice/?p=1 ]]>